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We consider the Schrödinger–Poisson system in the repulsive (plasma physics)
Coulomb case. Given a stationary state from a certain class we prove its non-
linear stability, using an appropriately defined energy-Casimir functional as
Lyapunov function. To obtain such states we start with a given Casimir func-
tional and construct a new functional which is in some sense dual to the corre-
sponding energy-Casimir functional. This dual functional has a unique maxi-
mizer which is a stationary state of the Schrödinger–Poisson system and lies in
the stability class. The stationary states are parameterized by the equation of
state, giving the occupation probabilities of the quantum states as a strictly
decreasing function of their energy levels.

KEY WORDS: Hartree problem; Schrödinger–Poisson system; stationary solu-
tions; nonlinear stability.

1. INTRODUCTION

A large ensemble of charged quantum particles interacting only by the
electrostatic field which they create collectively can be modelled by the
Hartree problem:

i
“R
“t
=[HV, R] (1.1)

gV=−n (1.2)

n(t, x)=R(t, x, x) (1.3)



Here R(t) denotes the density operator of the system, a time dependent,
hermitian, positive trace class operator acting on the Hilbert space L2(W),
W … R3 being the spatial domain in which the particles are confined.
Equation (1.1) is the von Neumann–Heisenberg equation, where the
potential V in the Hamiltonian HV :=−g+V(t, x) is given as the solu-
tion of the Poisson equation (1.2), subject to a homogeneous Dirichlet
boundary condition

V(t, x)=0, t \ 0, x ¥ “W (1.4)

By abuse of notation R(t, x, y) denotes the L2-kernel of the trace class
operator R(t), and its trace is the spatial charge density n=n(t, x). The
Hartee problem was rigorously derived as the weak-coupling mean field
limit of a repulsively interacting particle ensemble by Spohn (25) under the
assumptions of a bounded interaction potential and molecular chaos.
Recently, the assumption on the potential was generalized, explicitely
allowing the electrostatic Coloumb interaction. (4) We remark that the
Hartree system does not take into account the Pauli exclusion principle, as
opposed to the Hartree–Fock system, cf. refs. 8 and 12, which currently is
under intensive scrutiny.
The Hartree picture is equivalent to the Schrödinger–Poisson picture,

which is more suitable for our present purposes and is obtained as follows:
Let (fk) be a complete orthonormal sequence of eigenvectors of R(0) with
eigenvalues (lk) and let (kk(t, · )) be the solution of the Schrödinger–
Poisson system

i
“kk

“t
=−Dkk+Vkk (1.5)

gV=−n (1.6)

n=C
.

k=1
lk |kk |2 (1.7)

with initial data kk(0)=fk. Then

R(t, x, y)=C
k
lkkk(t, x) k̄k(t, y) (1.8)

defines the L2-kernel of an operator R(t) which solves the von Neumann–
Heisenberg equation (1.1) with the corresponding initial datum, and vice
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versa. In the Schrödinger–Poisson picture kk=kk(t, x) is the wave func-
tion of the kth state, k ¥N, lk \ 0 denote the corresponding occupation
probabilities normalized such that ; k lk=1, n=n(t, x) is the number
density, and V=V(t, x) is again the self-consistent potential of the
ensemble. In order to avoid continuous spectra we shall analyze this system
on a bounded domain W … R3 with sufficiently smooth boundary, and we
supplement it with Dirichlet boundary conditions:

kk(t, x)=0, V(t, x)=0, t \ 0, x ¥ “W, k ¥N (1.9)

We could also consider the system on the whole space R3 and add to V a
confining exterior potential Ve, in which case the obtained results and their
proofs need only minor modifications. Initial data are given by a complete
orthonormal system (kk( · , 0)) in L2(W). We refer to refs. 1, 5, 12, and 19
for background information on the Schrödinger–Poisson system (1.5),
(1.6), (1.7).
The purpose of the present paper is to investigate the nonlinear sta-

bility of certain stationary states of the Schrödinger–Poisson system, i.e., of
solutions of the form kk(t, x)=e imktfk(x) with energy levels mk ¥ R, and
we prove the existence of such stationary states. To our knowledge, the
stability problem has not yet been investigated. The existence problem has
been considered before by different methods and under various sets of
assumptions, cf. refs. 19–22.
Our approach is motivated by analogous results for the Vlasov–

Poisson system which arises as the classical limit of the Schrödinger–
Poisson system. Both systems share the following property: The total
energy of the system is conserved along solutions—indeed, the dynamics
can be interpreted as the ‘‘Hamiltonian flow’’ induced by the energy func-
tional—, but the stationary states are not critical points of the energy. On
the other hand, there exist additional conserved quantities, the so-called
Casimir functionals, (6) such that a given stationary state is a critical point
for the appropriately chosen energy-plus-Casimir functional HC. The
energy-Casimir method was first used to prove genuine, nonlinear stability
for fluid-flow problems by Arnol’d in the 1960’s, cf. refs. 2 and 3. Some of
the background of this method can be found in ref. 18. More recently, the
energy-Casimir method was adapted to problems in kinetic theory, in par-
ticular the Vlasov–Poisson system, cf. refs. 13–17, 23, 24, 26, and 27. When
applying this method there is a sharp contrast between the plasma physics
situation and the stellar dynamics one, where the sign in the Poisson equa-
tion is reversed: The quadratic part in the expansion of the energy-Casimir
functional at the stationary state is positive definite in the plasma physics
case while it is indefinite in the stellar dynamics case. Therefore, in the
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former case the method applies in a straight forward manner, cf. ref. 23,
while in the latter case a careful investigation of the behavior of the energy-
Casimir functional along minimizing sequences is needed and leads to non-
linear stability only for such stationary states which are obtained as mini-
mizers of this functional. The present paper addresses the plasma-physics
case for the Schrödinger–Poisson system—certainly, the quantum-attractive
case is mathematically more difficult but also physically less interesting—,
and thus the approach should be more like the former case for the Vlasov–
Poisson system.
This is indeed so: In Section 3 we show that stationary states (k0, l0)

from a specified class are nonlinearly stable. The proof relies on estimating
the difference HC(k, l)−HC(k0, l0) from below by an expression which is
quadratic in (k, l)−(k0, l0), where (k, l) is some other, ‘‘close-by’’ state,
and observing that the energy-Casimir functional HC is constant along
solutions of the Schrödinger–Poisson system. In Section 4 we construct a
functional which is in some sense dual to a given energy-Casimir func-
tional. This dual functional is known in the literature and has been used to
construct stationary states, cf. ref. 21, but its relation to the energy-Casimir
functional is to our knowledge new and should be useful for related
problems. The dual functional turns out to be concave, and by variational
techniques we show in Section 5 that it has a unique maximizer, which is
a stationary state, and nonlinearly stable by Section 3. We emphasize
that—as opposed to the stellar-dynamics situation for the Vlasov–Poisson
system—the stability analysis and the existence analysis are independent
from each other; the connecting Section 4 puts both parts into a common
perspective. Before going into all this we introduce the class of stationary
states and Casimir functionals under consideration, derive some prelimi-
nary estimates, and fix some notation.

2. PRELIMINARIES

As state space for the Schrödinger–Poisson system we use the set

S :=3(k, l) | k=(kk)k ¥N …H10(W) 5H2(W)

is a complete orthonormal system in L2(W),

l=(lk)k ¥N ¥ l1 with lk \ 0, k ¥N,

C
k
lk F |gkk |2 <.4
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; k always means ;.

k=1. Our notation for the Sobolev spaces H
2 and H10 is

the standard one; by || · ||p we will denote the norm in the usual Lp space.
For (k, l) ¥S we have

nk, l :=C
k
lk |kk |2 ¥ L2(W)

and Vk, l denotes the Coulomb potential induced by nk, l, i.e.,

gVk, l=−nk, l on W, Vk, l=0 on “W

note that Vk, l ¥H
1
0(W) 5H2(W) by the energy bound and Sobolev

inequalities. For every initial state (k(0), l) ¥S there is a unique strong
solution [0,.[ ¦ tW k(t) of (1.5)–(1.9) with (k(t), l) ¥S, cf. ref. 5.
Throughout the paper, potentials V are real-valued while quantum states
kk are complex-valued. The energy of a state (k, l) ¥S is defined as

H(k, l) :=C
k
lk F |Nkk |2+

1
2
F nk, lVk, l

=C
k
lk F |Nkk |2+

1
2
F |NVk, l |2

integrals always extend over the set W. The energy is conserved along solu-
tions of the Schrödinger–Poisson system, indeed, the system (1.5)–(1.9) can
be written in the form

i
“kk

“t
=−

1
2lk
dk̄kH,

i
“k̄k

“t
=−

1
2lk
dkkH,

dlk
dt
=0

where the bar denotes complex conjugation.
To assess the stability of a given stationary state we employ an energy-

Casimir functional

HC(k, l) :=C
k
C(lk)+H(k, l)

with the real-valued function C defined appropriately. Clearly, HC is a
conserved quantity for the Schrödinger–Poisson system.
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The class of functions which generate the Casimir functionals will now
be specified: We say that a function f: RQ R is of Casimir class C iff it has
the following properties:

(i) f is continuous with f(s) > 0, s [ s0 and f(s)=0, s \ s0 for
some s0 ¥ ] 0,.],

(ii) f is strictly decreasing on ]−., s0] with limsQ −. f(s)=.,
(iii) there exist constants E > 0 and C > 0 such that

f(s) [ C(1+s)−7/2− E, s \ 0

For f ¥ C,

F(s) :=F
.

s
f(s) ds, s ¥ R (2.1)

defines a decreasing, continuously differentiable, and non-negative function
which is strictly convex on its support, and

F(s) [ C(1+s)−5/2− E, s \ 0

In passing we note that by adjusting various exponents our results easily
extend to general space dimensions.

Remark 1. (a) A typical example for f ¥ C is the Boltzmann dis-
tribution f(s)=e−bs with b > 0, where the cut-off level s0=.. Another
example, which also decays exponentially for sQ., is given by the Fermi–
Dirac statistics:

f(s) :=C F
R
3

dv

E+e |v|
2/2+s
, s ¥ R

where C > 0 and E > 0 are positive parameters.
A function f with f(s)=0 for s > s0 with s0 ¥ R will yield a stationary

state consisting of a finite number of quantum oscillators.
(b) We could generalize the assumption (iii) to requiring that both

f(−D+V) and F(−D+V) are of trace class for (smooth) potentials V \ 0,
cf. Lemma 1 (b) below. However, we prefer to keep our assumptions on f
explicit.

Lemma 1. Let f ¥ C.

(a) For every b > 1 there exists C=C(b) ¥ R such that

F(s) \ −bs+C, s [ 0
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(b) Let V ¥H10(W) be non-negative on W. Then both f(−D+V) and
F(−D+V) are trace class.

Proof. Part (a) is straight forward from assumption (ii) and the
definition of F. As to (b), let (mk) denote the sequence of eigenvalues of
−g+V. Then, since V is non-negative and F decreasing,

C
k
F(mk) [C

k
F(m0k)

where m0k denote the eigenvalues of −g. For the latter we have the well-
known estimate that the number of such eigenvalues less than some m ¥ R
grows like m3/2 for mQ., which implies that the right hand sum is finite,
and F(−g+V) is trace class. Since f decays faster than F the same holds
true for f(−g+V). L

At several points the following technical observation will be useful:

Lemma 2. For k ¥H10(W) 5H2(W) with ||k||2=1 and V ¥H10(W),
V \ 0, we have

F(Ok, (−g+V) kP) [ Ok, F(−g+V) kP

with equality if k is an eigenstate of −g+V.

Proof. Denoting the spectral measure associated with −g+V and
k by s(dm) the claim translates into the inequality

F 1F ms(dm)2 [ F F(m) s(dm)

which holds due to the convexity of F and Jensen’s inequality. L

To conclude this section we make precise the class of stationary states
of the Schrödinger–Poisson system considered in this paper: We require
that the quadruple (k0, l0, m0, V0) with (k0, l0) ¥S, m0=(m0, k) ¥ RN, and
V0 ¥H2(W) 5H10(W) satisfies the stationary Schrödinger–Poisson system

(−g+V0) k0, k=m0, kk0, k, k ¥N (2.2)

and

gV0=−n0=−C
k
l0, k |k0, k |2 (2.3)
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where the energy levels m0, k and occupation probabilities l0, k are related
through an equation of state of the form

l0, k=f(m0, k), k ¥N (2.4)

with some f ¥ C. Note that the corresponding density operator R0=
f(−g+V0) satisfies the steady-state Heisenberg equation

[HV0 , R0]=0

We briefly comment on how general the class of these stationary states is:

Remark 2. For a given Hamiltonian HV=−g+V with an ortho-
normal basis of eigenfunctions kk and eigenvalues mk—each listed accord-
ing to its multiplicity—the integral kernel of every solution of the operator
equation [HV, R]=0 has the form

C
k, l; mk=ml

lklkk(x) kl(y)

cf. ref. 9. If the eigenvalues are all simple—as in the one-dimensional situa-
tion—the kernel reduces to ; k lkkk(x) kk(y), and in this case lk=f(mk),
k ¥N, for some function f. For the stationary states of the Schrödinger–
Poisson system which we construct the kernel of the density matrix is of the
latter form. Our restrictions on f are such that the resulting stationary
states are stable, and one will certainly expect that (possibly unstable)
stationary states exist for more general functions f.

Remark 3. If (k0, l0, m0, V0) satisfies the equations (2.2), (2.3), (2.4)
with f ¥ C then the estimate

C
k
l0, k ||k0, k ||

2
H2 <.

follows and thus in particular (k, l) ¥S. To see this we use (2.2) and
estimate

C
k
l0, k ||Nk0, k ||

2
2+F |NV0 |2=C

k
m0, kf(m0, k) [ C C

k
(1+m0, k)−(5/2+E) <.

by assumption (iii) on f and the asymptotic behavior of m0, k. Thus, by the
Sobolev inequality,

||n0 ||3 [C
k
l0, k ||k0, k ||

2
6 <.
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and V0 ¥W2, 3(W) … L.(W) follows. Again from (2.2) we conclude that

C
k
l0, k ||gk0, k ||

2
2 [ C 1C

k
l0, km

2
0, k+C

k
l0, k 2

[ C 11+C
k
(1+m0, k)−(3/2+E)2 <.

Remark 4. In the Heisenberg picture the stationary problem (2.2),
(2.3) reads

gV0=−f(−g+V0)(x, x), x ¥ W

V0=0 on “W

Here and in the sequel we denote by L(x, y) the integral kernel of the trace
class operator L.

Given f ¥ C we still need to specify the corresponding Casimir func-
tional: With F given by (2.1), its Legendre or Fenchel transform is defined
by

Fg(s) :=sup
l ¥ R

(ls−F(l)), s ¥ R (2.5)

and the energy-Casimir functional corresponding to f is

HC(k, l) :=C
k
Fg(−lk)+H(k, l), (k, l) ¥S (2.6)

Note that since FŒ=−f has an inverse on ]−., s0[,

Fg(s)=F
0

−s
f−1(s) ds (2.7)

for −.=−f(−.) < s [ 0, and all −lk lie in this interval.
Obviously, only the values of f ¥ C on the interval ] 0,.[ are signifi-

cant for the following theory. However, for technical reasons we consider
the functions f defining the equations of state as defined on all of R.
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Remark 5. The energy-Casimir functional (2.6) can easily be
expressed in the Heisenberg picture. With

H2C(R) :=Tr Fg(−R)+Tr(−gR)+
1
2
F |NVR |2 dx

where VR :=Vk, l, and R and (k, l) are related by (1.8) we obtain

HC(k, l)=H2C(R)

Here we have R ¥S2 , where

S2 :={R : L2(W)Q L2(W)|R \ 0, Tr R+Tr(−gR) <.}

3. STABILITY

In the present section we establish the following result on nonlinear
stability in terms of the electrostatic field:

Theorem 1. Let(k0, l0, m0, V0)beastationarystateof theSchrödinger–
Poisson system with

l0, k=f(m0, k), k ¥N

for some f ¥ C, and (k0, l0) ¥S. Then this state is nonlinearly stable in
the following sense: If tW (k(t), l) is a solution of the Schrödinger–
Poisson system with initial datum (k(0), l) ¥S then

1
2 ||NVk(t), l−NV0 ||

2
2 [HC(k(0), l)−HC(k0, l0), t \ 0

We recall thatHC is defined by (2.6) for the given function f and note
that, clearly, the right hand side in the estimate above becomes arbitrarily
small if (k(0), l) is close to (k0, l0) in the appropriate topology. The main
step in the proof of Theorem 1 is to show the following estimate:

Lemma 3. Let V ¥H10(W), V \ 0. Then

C
k

5Fg(−lk)+lk F [|Nkk |2+V |kk |2]6 \ −Tr[F(−g+V)], (k, l) ¥S

with equality for (k, l)=(kV, lV), where kV=(kV, k) ¥H
1
0(W)

N is an
orthonormal sequence of eigenfunctions of −g+V with eigenvalues
mV=(mV, k), and lV=(lV, k)=(f(mV, k)).
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Proof. By (2.5),

Fg(−l)+lm \ −F(m), l, m ¥ R (3.1)

We substitute lk for l and

mk :=F [|Nkk |2+V |kk |2]=Okk, (−g+V) kkP

for m and sum over k to find

C
k
[Fg(−lk)+lk F [|Nkk |2+V |kk |2]] \ −C

k
F(Okk, (−g+V) kkP)

\ −C
k
Okk, F(−g+V) kkP)

=−Tr[F(−g+V)]

by Lemma 2 and the definition of trace.
Now suppose that (k, l)=(kV, lV). Since by definition each kV, k is

an eigenfunction of −g+V the mk defined above are the corresponding
eigenvalues mV, k, and

Tr[F(−g+V)]=C
k
F(mV, k)

On the other hand we have lV, k=f(mV, k)=−FŒ(mV, k) which by conjugacy
is equivalent to mV, k=Fg

Œ(−lV, k), k ¥N. This implies that

C
k
F(mV, k)=−C

k
[Fg(−lV, k)+lV, k mV, k]

and the proof is complete. L

Remark 6. In Lemma 3 equality holds if and only if (k, l)=
(kV, lV). This follows from the strict convexity of F, but we make no use
of this observation in the rest of the paper.

Proof of Theorem 1. Let V=Vk, l be the potential induced by
(k, l) ¥S. Then
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1
2
||NV−NV0 ||

2
2

=
1
2
F |NV|2+FgV V0+

1
2
F |NV0 |2

=HC(k, l)−5C
k

1Fg(−lk)+lk F |Nkk |22−
1
2
F |NV0 |2−FgV V06

=HC(k, l)−5C
k

1Fg(−lk)+lk F [|Nkk |2+V0 |kk |2]2−
1
2
F |NV0 |26

[HC(k, l)−5−Tr[F(−g+V0)]−
1
2
F |NV0 |26

=HC(k, l)−5C
k
(Fg(−l0, k)+l0, k F (|Nk0, k |2+V0 |k0, k |2))−

1
2
F |NV0 |26

=HC(k, l)−HC(k0, l0)

where we have used Lemma 3 twice. Given a solution with (k(0), l) ¥S

we may substitute (k(t), l) ¥S into this estimate, and sinceHC is constant
along solutions the assertion follows. L

A trivial consequence of Theorem 1 is the following stability estimate
for the position density:

1
2 ||nk(t), l−n0 ||

2
H−1(W) [HC(k(0), l)−HC(k0, l0), t \ 0

While our approach does not give a direct estimate for the density matrix,
it is possible to refine the estimate (3.1) in Lemma 3 as follows: By Taylor
expansion,

Fg(−l)+lm=Fg(−f(m))+f(m) m+
1

2 |fŒ(f−1(t(l, m)))|
(l−f(m))2

(3.2)

where t(l, m) is between l and f(m), and we assume that f ¥ C1(R) with
fŒ < 0 on R. Adjusting the proof of Theorem 1 accordingly we obtain the
following estimate in terms of the wave functions:

Corollary 1. Let the assumptions of Theorem 1 hold and assume
in addition that f ¥ C1(R) with fŒ < 0 on R. Then there exists a constant
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C > 0 depending on the stationary state such that for any solution of the
Schrödinger–Poisson system with, say, lk [; j l0, j+1, k ¥N,

C
k
|lk−f(O(−g+V0) kk(t), kk(t)P)|2

[ C(HC(k(0), l)−HC(k0, l0)), t \ 0

Note that we are primarily interested in solutions with initial data
which are small perturbations of the stationary state, so the size condition
on lk is not a real restriction.

Proof. Let

mk(t) :=O(−g+V0) kk(t), kk(t)P, k ¥N, t \ 0

Using (3.2) and proceeding as in the proof of Theorem 1 we obtain, with
tk(t) between lk and f(mk(t)),

1
2
C
k

1
|fŒ(f−1(tk(t)))|

|lk−f(mk(t))|2+
1
2
||NVk(t), l−NV0 ||

2
2

=HC(k(0), l)−HC(k0, l0)

Now mk(t) \ 0 so f(mk(t)) [ f(0), k ¥N, t \ 0. Since by assumption the lk
are bounded in terms of the stationary state, 0 [ tk(t) [ c, k ¥N, t \ 0,
with some c > 0. If we choose

C :=2 max
0 [ t [ c

|fŒ(f−1(t))| <.

the assertion follows. L

4. DUAL FUNCTIONALS

Our aim for the rest of this paper is to prove the existence of station-
ary states which satisfy the assumption of our stability result. For each
f ¥ C a corresponding stationary state will be obtained as the unique
maximizer of an appropriately defined functional. In the present section we
derive this dual functional from the energy-Casimir functional used in the
stability analysis. The relation between these functionals is of interest in
itself, but it is not used in the proofs of our results. Throughout this section
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we fix an element f ¥ C. We move to the dual functional in two steps. First
we apply the saddle point principle and define, for L > 0 fixed,

G(k, l, V, s) :=C
k
[Fg(−lk)+lk F [|Nkk |2+V |kk |2]]−

1
2
F |NV|2

+s 5C
k
lk−L6

where k=(kk) is again an orthonormal system in L2(W), l ¥ l1+=
{(sk) ¥ l1 | sk \ 0, k ¥N}, and V ¥H10(W) may now vary independently of
k and l. The role of the parameter s ¥ R (Lagrange multiplier) will become
clear shortly; the relation betweenHC and this new functional is as follows:

Remark 7. For any k, l, s,

sup
V

G(k, l, V, s)=HC(k, l)+s 5C
k
lk−L6 (4.1)

and the supremum is attained at V=Vk, l. In fact, integration by parts and
some computations show that

G(k, l, V, s)=HC(k, l)+s 5C
k
lk−L6−

1
2
||NVk, l−NV||

2
2

As second step on our way to a dual variational formulation we
reduce the functional G to a functional of V and s as follows:

F(V, s) :=inf
k, l

G(k, l, V, s) (4.2)

where the infimum is taken over all l ¥ l1+ and all orthonormal sequences
k in L2(W). It is this functional which will have a unique maximizer in the
next section, which is then a stationary state. First however, we need to
bring it into a different form:

Remark 8. The infimum in the definition of F is attained at
k=(kV, k), an orthonormal sequence of eigenstates of −g+V with cor-
responding eigenvalues mV, k, and l=lV where lV, k=f(mV, k+s), k ¥N.
Moreover,

F(V, s)=−
1
2
F |NV|2−Tr[F(−D+V+s)]−sL
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To see this, recall Lemma 3 and Remark 6 and observe that f( ·+s) ¥ C

for any s ¥ R, provided f ¥ C.

Remark 9. In the Heisenberg picture we define

G2(R, V, s) :=Tr Fg(−R)+Tr((−g+V) R)−
1
2
F |NV|2 dx+s(Tr R−L)

and obtain

G2(R, V, s)=G(k, l, V, s)

where the density operator’s L2-kernel is given by (1.8).

5. EXISTENCE OF STATIONARY STATES

In the present section we shall for each state relation f ¥ C and each
total charge L > 0 construct a unique maximizer of the functional F, which
is then a stationary state of the Schrödinger–Poisson system. We consider
only non-negative potentials and use the notation

H10,+(W) :={V ¥H10(W) | V \ 0}

Theorem 2. Let f ¥ C and L > 0 be given. The functional

F: H10,+(W)×R ¦ (V, s)W −
1
2
F |NV|2−Tr[F(−D+V+s)]−sL

is continuous, strictly concave, bounded from above, and coercive. In
particular, there exists a unique maximizer (V0, s0) of F. If we define
k0=(k0, k) as the orthonormal sequence of eigenstates of the operator
−g+V0 with corresponding eigenvalues m0, k and l0, k :=f(m0, k+s0), then
(k0, l0, m0, V0) is a stationary state of the Schrödinger–Poisson system with
; k l0, k=L and (k0, l0) ¥S.

Note that s0 plays the role of a (constant) Fermi level here.

Remark 10. In the Heisenberg picture the steady state problem now
reads

gV0=−f(−g+V0+s0)(x, x), x ¥ W (5.1)

V0=0 on “W (5.2)
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Proof of Theorem 2. F is strictly concave. The first term of F is
evidently concave. To show the strict concavity of the second term i.e., the
strict convexity of Tr[F(−D+V+s)], let (Vj, sj) ¥H

1
0,+×R, j=1, 2, a ¥

] 0, 1[, and f ¥H2 5H10. By convexity of F and Lemma 2,

F(Of, a(−g+V1+s1) f+(1−a)(−g+V2+s2) fP)

[ aOf, F(−g+V1+s1) fP+(1−a)Of, F(−g+V2+s2) fP

Now we substitute kk for f, (kk) an orthonormal sequence of eigenstates
of a(−g+V1+s1)+(1−a)(−g+V2+s2), and sum over k to obtain the
convexity estimate for Tr[F(−D+V+s]. If we have equality in this esti-
mate then

Okk, F(−g+V1+s1) kkP=Okk, F(−g+V2+s2) kkP, k ¥N

and thus V1=V2 and s1=s2.

F is bounded from above and coercive. Since F is non-negative, the
critical case in the coercivity estimate is s < 0. Let m

¯
V denote the ground

state energy of −D+V with corresponding ground state k
¯
V. Since F is non-

negative and satisfies estimate (a) in Lemma 1 we have for s [ −m
¯
V,

F(V, s) [ −
1
2
F |NV|2−Ok

¯
V, F(−g+V+s) k

¯
VP−sL

=−
1
2
F |NV|2−F(−m

¯
V+s)−sL

[ −
1
2
F |NV|2+(b−L) s+bm

¯
V−C

where we choose b > L. Also

m
¯
V= inf

f ¥H10 , ||f||2=1
F [− |Nf|2+V |f|2] [

1
vol W

F V [ C1 ||V||H10

choosing f :=1/`vol W. Together with the estimate above and Poincaré’s
inequality this implies that for s [ −C1 ||V||H10 we have

F(V, s) [ −C2 ||V||
2
H10
+C3 ||V||H10+(b−L) s+C4 (5.3)
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where the constants C1, C2, C3, C4 are positive and b > L, cf. Lemma 1(a).
On the other hand, by the non-negativity of F and Poincaré’s inequality,

F(V, s) [ −C2 ||V||
2
H10
−sL (5.4)

and (5.3) and (5.4) together imply that F is bounded from above and
coercive.

Existence of a unique maximizer. The existence of a unique maxi-
mizer of F is standard, cf. for example, ref. 11, Chap. II, Prop. 1.2,
provided F is upper semi-continuous. This in turn follows from the fact
that F is concave and bounded from below, at least locally, cf. ref. 11,
Chap. I, Lemma 2.1: The only term for which this may not be immediately
obvious is the trace term, but

Tr[F(−g+V+s)] [C
k
F(mk+s0) <.

where mk are the eigenvalues of −g+V and s \ s0 for arbitrary s0 ¥ R.

(k0, l0, m0, V0) is a stationary state. Since FŒ=−f, the stationarity of
F(V0, s) with respect to s implies

0=
dF(V0, s)
ds
:
s0

=Tr[f(−D+V0+s0)]−L

=C
k
f(m0, k+s0)−L=C

k
l0, k−L

so that ; k l0, k=L as claimed. In order that (k0, l0, m0, V0) is a stationary
state we need to show that

gV0+C
k
l0, k |k0, k |2=0 (5.5)

To verify this we observe that V0, being a maximizer of F( · , s0), satisfies
the Euler–Lagrange equation (5.1). In our case

f(−D+V0+s0)(x, x)=C
k
f(m0, k+s0) |k0, k |2 (x) (5.6)

and (5.5) follows from (5.1), (5.6), and the fact that by definition, l0, k=
f(m0, k+s0). As to the proof for (k0, l0) ¥S we refer to Remark 3. L

In view of the relations between our various functionals derived in the
previous section it is of interest to note:
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Remark 11. If (V0, s0) is the maximizer obtained in Theorem 2 and
(k0, l0, m0, V0) is the corresponding stationary state, then

F(V0, s0)=HC(k0, l0)

To see this, note that by (4.2) we have

F(V0, s0)=G(k0, l0, V0, s0) [HC(k0, l0)

where equality holds iff V0 is the maximizer of G(k0, l0, V, s0) on H
1
0; note

that here G is independent of s since ; k l0, k=1. This, on the other hand,
is equivalent to the fact that V0 is the solution of the Poisson equation (5.5).
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